The Chinese University of Hong Kong
 Department of Mathematics
 MMAT 5340 Probability and Stochastic Analysis

Homework 3: Martingales

Due Date: $23: 59 \mathrm{pm}$ on Tuesday, February 6th, 2024.
Please submit your homework on Blackboard

1. (a) Let $X: \Omega \rightarrow \mathbb{R}$ be a random variable such that $X \equiv 0$, i.e. for any $\omega \in \Omega$, $X(\omega)=0$. Prove that $\sigma(X)=\{\emptyset, \Omega\}$.
(b) Let $\mathcal{G}:=\{\emptyset, \Omega\}$, and $X: \Omega \rightarrow \mathbb{R}$ be \mathcal{G}-measurable. Prove that $X \equiv c$ for some constant $c \in \mathbb{R}$.
2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathbb{F}=\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration. Given an \mathbb{F} predictable process $\left(H_{n}\right)_{n \geq 0}$, which is uniformly bounded, and an \mathbb{F}-martingale $\left(X_{n}\right)_{n \geq 0}$, we define a process $\left(V_{n}\right)_{n \geq 0}$ by

$$
V_{0}:=0, \quad V_{n}:=\sum_{k=1}^{n} H_{k}\left(X_{k}-X_{k-1}\right)
$$

Prove that $\left(V_{n}\right)_{n \geq 0}$ is still an \mathbb{F}-martingale.
3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathbb{F}=\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration. Given an \mathbb{F}-submartingale $\left(X_{n}\right)_{n \geq 0}$, we define

$$
\Delta A_{n}:=\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]-X_{n-1}, \quad \Delta M_{n}:=X_{n}-\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right], \quad \forall n \geq 1,
$$

and

$$
A_{0}=M_{0}=0, \quad A_{n}:=\sum_{k=1}^{n} \Delta A_{k}, \quad M_{n}:=\sum_{k=1}^{n} \Delta M_{k} .
$$

(a) Prove that $\left(M_{n}\right)_{n \geq 0}$ is an \mathbb{F}-martingale, and that $\left(A_{n}\right)_{n \geq 0}$ is an increasing \mathbb{F} predictable process.
(b) Prove that $\left(X_{n}\right)_{n \geq 0}$ has the decomposition

$$
\begin{equation*}
X_{n}=X_{0}+M_{n}+A_{n}, \quad \forall n \geq 0 . \tag{1}
\end{equation*}
$$

(c) Let $\left(A_{n}^{1}\right)_{n \geq 0}$ and $\left(A_{n}^{2}\right)_{n \geq 0}$ be two \mathbb{F}-predictable processes such that $A_{0}^{1}=A_{0}^{2}=0$. Prove that if $\left(A_{n}^{1}-A_{n}^{2}\right)_{n \geq 0}$ is an \mathbb{F}-martingale, then $A_{n}^{1}=A_{n}^{2}$, a.s. for each $n \geq 1$.
(d) Deduce that the decomposition (1) is unique, i.e. if one has

$$
X_{n}=X_{0}+\widetilde{M}_{n}+\widetilde{A}_{n}, \quad \forall n \geq 0
$$

for some \mathbb{F}-martingale $\left(\widetilde{M}_{n}\right)_{n \geq 0}$ and increasing \mathbb{F}-predictable process $\left(\widetilde{A}_{n}\right)_{n \geq 0}$ such that $\widetilde{M}_{0}=\widetilde{A}_{0}=0$, then $A_{n}=\widetilde{A}_{n}$ and $M_{n}=\widetilde{M}_{n}$, a.s. for each $n \geq 1$.

